Module flowcon.CNF.cnf
Classes
class CNF (odefunc, T=1.0, train_T=False, regularization_fns=None, solver='dopri5', atol=1e-05, rtol=1e-05)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class CNF(nn.Module): def __init__(self, odefunc, T=1.0, train_T=False, regularization_fns=None, solver='dopri5', atol=1e-5, rtol=1e-5): super(CNF, self).__init__() if train_T: self.register_parameter("sqrt_end_time", nn.Parameter(torch.sqrt(torch.tensor(T)))) else: self.register_buffer("sqrt_end_time", torch.sqrt(torch.tensor(T))) nreg = 0 if regularization_fns is not None: odefunc = RegularizedODEfunc(odefunc, regularization_fns) nreg = len(regularization_fns) self.odefunc = odefunc self.nreg = nreg self.regularization_states = None self.solver = solver self.atol = atol self.rtol = rtol self.test_solver = solver self.test_atol = atol self.test_rtol = rtol self.solver_options = {} def forward(self, z, logpz=None, integration_times=None, reverse=False): if logpz is None: _logpz = torch.zeros(z.shape[0], 1).to(z) else: _logpz = logpz if integration_times is None: integration_times = torch.tensor([0.0, self.sqrt_end_time * self.sqrt_end_time]).to(z) if reverse: integration_times = _flip(integration_times, 0) # Refresh the odefunc statistics. self.odefunc.before_odeint() # Add regularization states. reg_states = tuple(torch.tensor(0).to(z) for _ in range(self.nreg)) if self.training: state_t = odeint( self.odefunc, (z, _logpz) + reg_states, integration_times.to(z), atol=self.atol, rtol=self.rtol, method=self.solver, options=self.solver_options, adjoint_options={"norm": "seminorm"} # step_size = self.solver_options["step_size"] ) else: state_t = odeint( self.odefunc, (z, _logpz), integration_times.to(z), atol=self.test_atol, rtol=self.test_rtol, method=self.test_solver, adjoint_options={"norm": "seminorm"} # step_size=self.solver_options["step_size"] ) if len(integration_times) == 2: state_t = tuple(s[1] for s in state_t) z_t, logpz_t = state_t[:2] self.regularization_states = state_t[2:] if logpz is not None: return z_t, logpz_t else: return z_t def get_regularization_states(self): reg_states = self.regularization_states self.regularization_states = None return reg_states def num_evals(self): return self.odefunc._num_evals.item()
Ancestors
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Methods
def forward(self, z, logpz=None, integration_times=None, reverse=False) ‑> Callable[..., Any]
-
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them. def get_regularization_states(self)
def num_evals(self)