Module flowcon.CNF.neural_odes.diffeq_layers.basic

Functions

def weights_init(m)

Classes

class BlendConv2d (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False, **unused_kwargs)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class BlendConv2d(nn.Module):
    def __init__(
        self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False,
        **unused_kwargs
    ):
        super(BlendConv2d, self).__init__()
        module = nn.ConvTranspose2d if transpose else nn.Conv2d
        self._layer0 = module(
            dim_in, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )
        self._layer1 = module(
            dim_in, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )

    def forward(self, t, x):
        y0 = self._layer0(x)
        y1 = self._layer1(x)
        return y0 + (y1 - y0) * t

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class BlendLinear (dim_in, dim_out, layer_type=torch.nn.modules.linear.Linear, **unused_kwargs)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class BlendLinear(nn.Module):
    def __init__(self, dim_in, dim_out, layer_type=nn.Linear, **unused_kwargs):
        super(BlendLinear, self).__init__()
        self._layer0 = layer_type(dim_in, dim_out)
        self._layer1 = layer_type(dim_in, dim_out)

    def forward(self, t, x):
        y0 = self._layer0(x)
        y1 = self._layer1(x)
        return y0 + (y1 - y0) * t

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class ConcatConv2d (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConcatConv2d(nn.Module):
    def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
        super(ConcatConv2d, self).__init__()
        module = nn.ConvTranspose2d if transpose else nn.Conv2d
        self._layer = module(
            dim_in + 1, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )

    def forward(self, t, x):
        tt = torch.ones_like(x[:, :1, :, :]) * t
        ttx = torch.cat([tt, x], 1)
        return self._layer(ttx)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class ConcatConv2d_v2 (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConcatConv2d_v2(nn.Module):
    def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
        super(ConcatConv2d, self).__init__()
        module = nn.ConvTranspose2d if transpose else nn.Conv2d
        self._layer = module(
            dim_in, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )
        self._hyper_bias = nn.Linear(1, dim_out, bias=False)

    def forward(self, t, x):
        return self._layer(x) + self._hyper_bias(t.view(1, 1)).view(1, -1, 1, 1)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class ConcatCoordConv2d (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConcatCoordConv2d(nn.Module):
    def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
        super(ConcatCoordConv2d, self).__init__()
        module = nn.ConvTranspose2d if transpose else nn.Conv2d
        self._layer = module(
            dim_in + 3, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )

    def forward(self, t, x):
        b, c, h, w = x.shape
        hh = torch.arange(h).to(x).view(1, 1, h, 1).expand(b, 1, h, w)
        ww = torch.arange(w).to(x).view(1, 1, 1, w).expand(b, 1, h, w)
        tt = t.to(x).view(1, 1, 1, 1).expand(b, 1, h, w)
        x_aug = torch.cat([x, tt, hh, ww], 1)
        return self._layer(x_aug)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class ConcatLinear (dim_in, dim_out)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConcatLinear(nn.Module):
    def __init__(self, dim_in, dim_out):
        super(ConcatLinear, self).__init__()
        self._layer = nn.Linear(dim_in + 1, dim_out)

    def forward(self, t, x):
        tt = torch.ones_like(x[:, :1]) * t
        ttx = torch.cat([tt, x], 1)
        return self._layer(ttx)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class ConcatLinear_v2 (dim_in, dim_out)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConcatLinear_v2(nn.Module):
    def __init__(self, dim_in, dim_out):
        super(ConcatLinear_v2, self).__init__()
        self._layer = nn.Linear(dim_in, dim_out)
        self._hyper_bias = nn.Linear(1, dim_out, bias=False)

    def forward(self, t, x):
        return self._layer(x) + self._hyper_bias(t.view(-1, 1))

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class ConcatSquashConv2d (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConcatSquashConv2d(nn.Module):
    def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
        super(ConcatSquashConv2d, self).__init__()
        module = nn.ConvTranspose2d if transpose else nn.Conv2d
        self._layer = module(
            dim_in, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )
        self._hyper_gate = nn.Linear(1, dim_out)
        self._hyper_bias = nn.Linear(1, dim_out, bias=False)

    def forward(self, t, x):
        return self._layer(x) * torch.sigmoid(self._hyper_gate(t.view(1, 1))).view(1, -1, 1, 1) \
            + self._hyper_bias(t.view(1, 1)).view(1, -1, 1, 1)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class ConcatSquashLinear (dim_in, dim_out)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConcatSquashLinear(nn.Module):
    def __init__(self, dim_in, dim_out):
        super(ConcatSquashLinear, self).__init__()
        self._layer = nn.Linear(dim_in, dim_out)
        self._hyper_bias = nn.Linear(1, dim_out, bias=False)
        self._hyper_gate = nn.Linear(1, dim_out)

    def forward(self, t, x):
        return self._layer(x) * torch.sigmoid(self._hyper_gate(t.view(-1, 1))) \
            + self._hyper_bias(t.view(-1, 1))

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class GatedConv (in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class GatedConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1):
        super(GatedConv, self).__init__()
        self.layer_f = nn.Conv2d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups
        )
        self.layer_g = nn.Conv2d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups
        )

    def forward(self, x):
        f = self.layer_f(x)
        g = torch.sigmoid(self.layer_g(x))
        return f * g

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class GatedConvTranspose (in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class GatedConvTranspose(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1):
        super(GatedConvTranspose, self).__init__()
        self.layer_f = nn.ConvTranspose2d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding,
            groups=groups
        )
        self.layer_g = nn.ConvTranspose2d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding,
            groups=groups
        )

    def forward(self, x):
        f = self.layer_f(x)
        g = torch.sigmoid(self.layer_g(x))
        return f * g

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class GatedLinear (in_features, out_features)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class GatedLinear(nn.Module):
    def __init__(self, in_features, out_features):
        super(GatedLinear, self).__init__()
        self.layer_f = nn.Linear(in_features, out_features)
        self.layer_g = nn.Linear(in_features, out_features)

    def forward(self, x):
        f = self.layer_f(x)
        g = torch.sigmoid(self.layer_g(x))
        return f * g

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class HyperConv2d (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class HyperConv2d(nn.Module):
    def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
        super(HyperConv2d, self).__init__()
        assert dim_in % groups == 0 and dim_out % groups == 0, "dim_in and dim_out must both be divisible by groups."
        self.dim_in = dim_in
        self.dim_out = dim_out
        self.ksize = ksize
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.bias = bias
        self.transpose = transpose

        self.params_dim = int(dim_in * dim_out * ksize * ksize / groups)
        if self.bias:
            self.params_dim += dim_out
        self._hypernet = nn.Linear(1, self.params_dim)
        self.conv_fn = F.conv_transpose2d if transpose else F.conv2d

        self._hypernet.apply(weights_init)

    def forward(self, t, x):
        params = self._hypernet(t.view(1, 1)).view(-1)
        weight_size = int(self.dim_in * self.dim_out * self.ksize * self.ksize / self.groups)
        if self.transpose:
            weight = params[:weight_size].view(self.dim_in, self.dim_out // self.groups, self.ksize, self.ksize)
        else:
            weight = params[:weight_size].view(self.dim_out, self.dim_in // self.groups, self.ksize, self.ksize)
        bias = params[:self.dim_out].view(self.dim_out) if self.bias else None
        return self.conv_fn(
            x, weight=weight, bias=bias, stride=self.stride, padding=self.padding, groups=self.groups,
            dilation=self.dilation
        )

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class HyperLinear (dim_in, dim_out, hypernet_dim=8, n_hidden=1, activation=torch.nn.modules.activation.Tanh)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class HyperLinear(nn.Module):
    def __init__(self, dim_in, dim_out, hypernet_dim=8, n_hidden=1, activation=nn.Tanh):
        super(HyperLinear, self).__init__()
        self.dim_in = dim_in
        self.dim_out = dim_out
        self.params_dim = self.dim_in * self.dim_out + self.dim_out

        layers = []
        dims = [1] + [hypernet_dim] * n_hidden + [self.params_dim]
        for i in range(1, len(dims)):
            layers.append(nn.Linear(dims[i - 1], dims[i]))
            if i < len(dims) - 1:
                layers.append(activation())
        self._hypernet = nn.Sequential(*layers)
        self._hypernet.apply(weights_init)

    def forward(self, t, x):
        params = self._hypernet(t.view(1, 1)).view(-1)
        b = params[:self.dim_out].view(self.dim_out)
        w = params[self.dim_out:].view(self.dim_out, self.dim_in)
        return F.linear(x, w, b)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class IgnoreConv2d (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class IgnoreConv2d(nn.Module):
    def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
        super(IgnoreConv2d, self).__init__()
        module = nn.ConvTranspose2d if transpose else nn.Conv2d
        self._layer = module(
            dim_in, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )

    def forward(self, t, x):
        return self._layer(x)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class IgnoreLinear (dim_in, dim_out)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class IgnoreLinear(nn.Module):
    def __init__(self, dim_in, dim_out):
        super(IgnoreLinear, self).__init__()
        self._layer = nn.Linear(dim_in, dim_out)

    def forward(self, t, x):
        return self._layer(x)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class SquashConv2d (dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class SquashConv2d(nn.Module):
    def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
        super(SquashConv2d, self).__init__()
        module = nn.ConvTranspose2d if transpose else nn.Conv2d
        self._layer = module(
            dim_in + 1, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
            bias=bias
        )
        self._hyper = nn.Linear(1, dim_out)

    def forward(self, t, x):
        return self._layer(x) * torch.sigmoid(self._hyper(t.view(1, 1))).view(1, -1, 1, 1)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class SquashLinear (dim_in, dim_out)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class SquashLinear(nn.Module):
    def __init__(self, dim_in, dim_out):
        super(SquashLinear, self).__init__()
        self._layer = nn.Linear(dim_in, dim_out)
        self._hyper = nn.Linear(1, dim_out)

    def forward(self, t, x):
        return self._layer(x) * torch.sigmoid(self._hyper(t.view(-1, 1)))

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, t, x) ‑> Callable[..., Any]

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.