Module flowcon.datasets.uci.miniboone
Functions
def load_miniboone()
def main()
def save_splits()
Classes
class MiniBooNEDataset (split='train', frac=None)
-
An abstract class representing a :class:
Dataset
.All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite :meth:
__getitem__
, supporting fetching a data sample for a given key. Subclasses could also optionally overwrite :meth:__len__
, which is expected to return the size of the dataset by many :class:~torch.utils.data.Sampler
implementations and the default options of :class:~torch.utils.data.DataLoader
. Subclasses could also optionally implement :meth:__getitems__
, for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples.Note
:class:
~torch.utils.data.DataLoader
by default constructs an index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided.Expand source code
class MiniBooNEDataset(Dataset): def __init__(self, split='train', frac=None): path = os.path.join(utils.get_data_root(), 'miniboone', '{}.npy'.format(split)) self.data = np.load(path).astype(np.float32) self.n, self.dim = self.data.shape if frac is not None: self.n = int(frac * self.n) def __getitem__(self, item): return self.data[item] def __len__(self): return self.n
Ancestors
- torch.utils.data.dataset.Dataset
- typing.Generic