Module flowcon.distributions.normal

Implementations of Normal distributions.

Classes

class ConditionalDiagonalNormal (shape, context_encoder=None)

A diagonal multivariate Normal whose parameters are functions of a context.

Constructor.

Args

shape
list, tuple or torch.Size, the shape of the input variables.
context_encoder
callable or None, encodes the context to the distribution parameters. If None, defaults to the identity function.
Expand source code
class ConditionalDiagonalNormal(Distribution):
    """A diagonal multivariate Normal whose parameters are functions of a context."""

    def __init__(self, shape, context_encoder=None):
        """Constructor.

        Args:
            shape: list, tuple or torch.Size, the shape of the input variables.
            context_encoder: callable or None, encodes the context to the distribution parameters.
                If None, defaults to the identity function.
        """
        super().__init__()
        self._shape = torch.Size(shape)
        if context_encoder is None:
            self._context_encoder = lambda x: x
        else:
            self._context_encoder = context_encoder
        self.register_buffer("_log_z",
                             torch.tensor(0.5 * np.prod(shape) * np.log(2 * np.pi),
                                          dtype=torch.float64),
                             persistent=False)

    def _compute_params(self, context):
        """Compute the means and log stds form the context."""
        if context is None:
            raise ValueError("Context can't be None.")

        params = self._context_encoder(context)
        if params.shape[-1] % 2 != 0:
            raise RuntimeError(
                "The context encoder must return a tensor whose last dimension is even."
            )
        if params.shape[0] != context.shape[0]:
            raise RuntimeError(
                "The batch dimension of the parameters is inconsistent with the input."
            )

        split = params.shape[-1] // 2
        means = params[..., :split].reshape(params.shape[0], *self._shape)
        log_stds = params[..., split:].reshape(params.shape[0], *self._shape)
        return means, log_stds

    def _log_prob(self, inputs, context):
        if inputs.shape[1:] != self._shape:
            raise ValueError(
                "Expected input of shape {}, got {}".format(
                    self._shape, inputs.shape[1:]
                )
            )

        # Compute parameters.
        means, log_stds = self._compute_params(context)
        assert means.shape == inputs.shape and log_stds.shape == inputs.shape

        # Compute log prob.
        norm_inputs = (inputs - means) * torch.exp(-log_stds)
        log_prob = -0.5 * torchutils.sum_except_batch(
            norm_inputs ** 2, num_batch_dims=1
        )
        log_prob -= torchutils.sum_except_batch(log_stds, num_batch_dims=1)
        log_prob -= self._log_z
        return log_prob

    def _sample(self, num_samples, context):
        # Compute parameters.
        means, log_stds = self._compute_params(context)
        stds = torch.exp(log_stds)
        means = torchutils.repeat_rows(means, num_samples)
        stds = torchutils.repeat_rows(stds, num_samples)

        # Generate samples.
        context_size = context.shape[0]
        noise = torch.randn(context_size * num_samples, *
                            self._shape, device=means.device)
        samples = means + stds * noise
        return torchutils.split_leading_dim(samples, [context_size, num_samples])

    def _mean(self, context):
        means, _ = self._compute_params(context)
        return means

Ancestors

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Inherited members

class DiagonalNormal (shape)

A diagonal multivariate Normal with trainable parameters.

Constructor.

Args

shape
list, tuple or torch.Size, the shape of the input variables.
context_encoder
callable or None, encodes the context to the distribution parameters. If None, defaults to the identity function.
Expand source code
class DiagonalNormal(Distribution):
    """A diagonal multivariate Normal with trainable parameters."""

    def __init__(self, shape):
        """Constructor.

        Args:
            shape: list, tuple or torch.Size, the shape of the input variables.
            context_encoder: callable or None, encodes the context to the distribution parameters.
                If None, defaults to the identity function.
        """
        super().__init__()
        self._shape = torch.Size(shape)
        self.mean_ = nn.Parameter(torch.zeros(shape).reshape(1, -1))
        self.log_std_ = nn.Parameter(torch.zeros(shape).reshape(1, -1))
        self.register_buffer("_log_z",
                             torch.tensor(0.5 * np.prod(shape) * np.log(2 * np.pi),
                                          dtype=torch.float64),
                             persistent=False)

    def _log_prob(self, inputs, context):
        if inputs.shape[1:] != self._shape:
            raise ValueError(
                "Expected input of shape {}, got {}".format(
                    self._shape, inputs.shape[1:]
                )
            )

        # Compute parameters.
        means = self.mean_
        log_stds = self.log_std_

        # Compute log prob.
        norm_inputs = (inputs - means) * torch.exp(-log_stds)
        log_prob = -0.5 * torchutils.sum_except_batch(
            norm_inputs ** 2, num_batch_dims=1
        )
        log_prob -= torchutils.sum_except_batch(log_stds, num_batch_dims=1)
        log_prob -= self._log_z
        return log_prob

    def _sample(self, num_samples, context):
        raise NotImplementedError()

    def _mean(self, context):
        return self.mean

Ancestors

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Inherited members

class StandardNormal (shape)

A multivariate Normal with zero mean and unit covariance.

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class StandardNormal(Distribution):
    """A multivariate Normal with zero mean and unit covariance."""

    def __init__(self, shape):
        super().__init__()
        self._shape = torch.Size(shape)

        self.register_buffer("_log_z",
                             torch.tensor(0.5 * np.prod(shape) * np.log(2 * np.pi),
                                          dtype=torch.float64),
                             persistent=False)

    def _log_prob(self, inputs, context):
        # Note: the context is ignored.
        if inputs.shape[1:] != self._shape:
            raise ValueError(
                "Expected input of shape {}, got {}".format(
                    self._shape, inputs.shape[1:]
                )
            )
        neg_energy = -0.5 * \
            torchutils.sum_except_batch(inputs ** 2, num_batch_dims=1)
        return neg_energy - self._log_z

    def _sample(self, num_samples, context):
        if context is None:
            return torch.randn(num_samples, *self._shape, device=self._log_z.device)
        else:
            # The value of the context is ignored, only its size and device are taken into account.
            context_size = context.shape[0]
            samples = torch.randn(context_size * num_samples, *self._shape,
                                  device=context.device)
            return torchutils.split_leading_dim(samples, [context_size, num_samples])

    def _mean(self, context):
        if context is None:
            return self._log_z.new_zeros(self._shape)
        else:
            # The value of the context is ignored, only its size is taken into account.
            return context.new_zeros(context.shape[0], *self._shape)

Ancestors

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Inherited members